LearnWithMey
  • 👩‍💻Getting started
  • Introduction
    • What and Why Data Analytics?
    • Data Analyst Roadmap
    • Data Analysis Steps
    • Type of Data Analytics
    • Data Analytics Use Cases
    • Data Analytics Tools
    • Skills Requirement
    • Data Analyst vs Data Scientist
      • Key notes
  • STATISTICAL TECHNIQUES IN BUSINESS & ECONOMICS
    • Chapter 1: What is Statistics?
      • 1.1 What is meant by Statistics?
      • 1.2 Types of Statistics?
      • 1.3 Types of Variables
      • 1.4 Levels of Meaurement
      • Chapter Summary
    • Chapter 2: Describing Data
      • 2.1 Introduction
      • 2.2 Constructing a Frequency Table
      • 2.3 Constructing the Frequency Distributions
    • Chapter 3: Describing Data - Numerical Measures
      • 3.1 Introduction
      • 3.2 The population Mean
      • 3.3 The Sample Mean
      • 3.4 Properties of the Arithmetic Mean
      • 3.5 The Weighted Mean
      • 3.6 The Median
      • 3.7 The Mode
      • 3.8 The Geometric Mean
      • 3.9 Why Study Dispersion?
      • 3.10 Measures of Dispersion
      • 3.11 Interpretation and Uses of the Standard Deviation
      • 3.12 The Mean and Standard Deviation of Grouped Data
    • Chapter 4: Describing Data - Display and Explore Data
      • 4.1 Introduction
      • 4.2 Dot Plots
      • 4.3 Stem-and-Leaf Displays
      • 4.4 Measures of Position
      • 4.5 Skewness
      • 4.6 Describing the Relationship between Two Variables
    • Chapter 5: A Survey of Probability Concepts
    • Chapter 6: Discrete Probability Distribution
    • Chapter 7: Continuous Probability Distribution
    • Chapter 8: Sampling Methods and Central Limit Theorem
    • Chapter 9: Estimation and Confidence Intervals
      • 9.1 Introduction
    • Chapter 10: One-Sample Tests of Hypothesis
      • 10.1 Introduction
      • 10.2 Hypothesis Testing
    • Chapter 11: Two-Sample Tests of Hypothesis
    • Chapter 12: Analysis of Variance
    • Chapter 13: Correlation and Linear Regression
    • Chapter 14: Multiple Regression Analysis
    • Chapter 15: Index Number
    • Chapter 16: Time Series and Forcasting
    • Chapter 17: Nonparametric Methods: Goodness-of-Fit Tests
    • Chapter 18: Nonparametric Methods: Analysis of Ranked Data
    • Chapter 19: Statistical Process Control and Quality Management
    • Chapter 20: Decision Theory
    • Tables ( Z and Student's T )
  • Python for Data Science
    • Handbook
    • Introduction
    • Installation
    • Basic Syntax
    • 2. Introduction to Numpy
  • Excel for Data Analysis
    • Introduction
  • Data Warehousing
    • Introduction
    • Data Warehouse Architecture
  • Data Visualization with Power BI
    • Introduction
  • Data Analysis with Python
    • Importing Datasets
      • Understanding Data
      • Python Packages for Data Sciences
    • Data Wrangling
      • Pre-processing Data in Python
      • Dealing with Missing Values in Python
      • Data Formatting in Python
  • Machine Learning
    • Page
    • 1. Introduction
    • Machine Learning Exercises
  • React
    • Lazy Loading
  • Search Tips
  • Secure Product Design
  • Google like a pro
  • Project Management
  • SEO in React.js
Powered by GitBook
On this page
  1. Introduction

What and Why Data Analytics?

PreviousGetting startedNextData Analyst Roadmap

Last updated 1 year ago

Definition:

Data analytics refers to the process of analyzing, interpreting, and deriving meaningful insights from large sets of data. It involves various techniques and methodologies to uncover patterns, trends, correlations, and other valuable information that can be used for decision-making, problem-solving, and optimization in various domains.

Basic Terminology

  • Data: is a raw and unorganized fact that required to be processed to make it meaningful, Data can be Number, Character, Image, etc.

  • Information: is a set of data which is processed in a meaningful way according to the given requirement.

  • Data analysis: The collection, transformation, and organization of data in order to draw conclusions, make predictions, and drive informed decision-making

  • Data analyst: Someone who collects, transforms, and organizes data in order to draw conclusions, make predictions, and drive informed decision-making

  • Data analytics: Data analytics includes all the steps you take, both human and machine-enabled, to discover, interpret, visualize, and tell the story of patterns in your data in order to drive business strategy and outcomes.It including data scientists, engineers, and analysts, to make it easy for the rest of the business to access and understand these findings.

Why use data analytics?

In a constantly changing business environment, it may be hard to predict your next move. That’s where data analytics comes in. By quickly accessing data across teams and the enterprise, you can drive better decisions by getting deeper insights about: Who your customers are and how to reach them The market, including competitors What has happened in the past What’s happening now What the future holds for your business